Classification#
- class neurio.tasks.classification.MNISTClassification[source]#
Bases:
Task
- evaluate(y_train, y_pred)[source]#
Evaluate the model on the given data, using the metrics defined in the task. :param y: true labels (could be self.y_test, self.y_train, self.y_validation) :param y_pred: predicted labels :return:
- get_data() list | tuple | array #
Returns the data used for the task. :return: if validation_data is None, returns train_data, test_data. Otherwise, returns train_data, validation_data, test_data.
- abstract get_metrics()#
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values :return:
- abstract get_metrics_info() dict #
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values should be a description of the metrics. :return: Dictionary containing the metrics used for the task.
- abstract get_test_data()#
Returns the test data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_train_data()#
Returns the train data used for the task.
- Returns:
X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_validation_data()#
Returns the validation data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- class neurio.tasks.classification.CIFAR10Classification[source]#
Bases:
Task
- evaluate(y_train, y_pred)[source]#
Evaluate the model on the given data, using the metrics defined in the task. :param y: true labels (could be self.y_test, self.y_train, self.y_validation) :param y_pred: predicted labels :return:
- get_data() list | tuple | array #
Returns the data used for the task. :return: if validation_data is None, returns train_data, test_data. Otherwise, returns train_data, validation_data, test_data.
- abstract get_metrics()#
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values :return:
- abstract get_metrics_info() dict #
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values should be a description of the metrics. :return: Dictionary containing the metrics used for the task.
- abstract get_test_data()#
Returns the test data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_train_data()#
Returns the train data used for the task.
- Returns:
X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_validation_data()#
Returns the validation data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- class neurio.tasks.classification.ImageNetClassification[source]#
Bases:
Task
- evaluate(y_train, y_pred)[source]#
Evaluate the model on the given data, using the metrics defined in the task. :param y: true labels (could be self.y_test, self.y_train, self.y_validation) :param y_pred: predicted labels :return:
- get_data() list | tuple | array #
Returns the data used for the task. :return: if validation_data is None, returns train_data, test_data. Otherwise, returns train_data, validation_data, test_data.
- abstract get_metrics()#
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values :return:
- abstract get_metrics_info() dict #
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values should be a description of the metrics. :return: Dictionary containing the metrics used for the task.
- abstract get_test_data()#
Returns the test data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_train_data()#
Returns the train data used for the task.
- Returns:
X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_validation_data()#
Returns the validation data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- class neurio.tasks.classification.NMNISTClassification[source]#
Bases:
Task
- evaluate(y_train, y_pred)[source]#
Evaluate the model on the given data, using the metrics defined in the task. :param y: true labels (could be self.y_test, self.y_train, self.y_validation) :param y_pred: predicted labels :return:
- get_data() list | tuple | array #
Returns the data used for the task. :return: if validation_data is None, returns train_data, test_data. Otherwise, returns train_data, validation_data, test_data.
- abstract get_metrics()#
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values :return:
- abstract get_metrics_info() dict #
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values should be a description of the metrics. :return: Dictionary containing the metrics used for the task.
- abstract get_test_data()#
Returns the test data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_train_data()#
Returns the train data used for the task.
- Returns:
X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_validation_data()#
Returns the validation data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- class neurio.tasks.classification.SHDClassification[source]#
Bases:
Task
- evaluate(y_train, y_pred)[source]#
Evaluate the model on the given data, using the metrics defined in the task. :param y: true labels (could be self.y_test, self.y_train, self.y_validation) :param y_pred: predicted labels :return:
- get_data() list | tuple | array #
Returns the data used for the task. :return: if validation_data is None, returns train_data, test_data. Otherwise, returns train_data, validation_data, test_data.
- abstract get_metrics()#
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values :return:
- abstract get_metrics_info() dict #
Returns a dictionary containing the metrics used for the task. The keys should be the name of the metrics, and the values should be a description of the metrics. :return: Dictionary containing the metrics used for the task.
- abstract get_test_data()#
Returns the test data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_train_data()#
Returns the train data used for the task.
- Returns:
X and Y, where X is the input(s) data and Y is the output(s) data.
- abstract get_validation_data()#
Returns the validation data used for the task. :return: X and Y, where X is the input(s) data and Y is the output(s) data.